Search results for "cathode material"

showing 8 items of 8 documents

Frontispiece: A Novel Cathode Material for Cathodic Dehalogenation of 1,1‐Dibromo Cyclopropane Derivatives

2015

Green chemistrychemistry.chemical_compoundchemistryCathode materialOrganic ChemistryInorganic chemistryOrganic chemistryHalogenationGeneral ChemistryCatalysisCyclopropaneCathodic protectionChemistry – A European Journal
researchProduct

Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries

2020

This article presents the electrochemical results that can be achieved for pure LiNiO2 cathode material prepared with a simple, low-cost, and efficient process. The results clarify the roles of the process parameters, precipitation temperature, and lithiation temperature in the performance of high-quality LiNiO2 cathode material. Ni(OH)2 with a spherical morphology was precipitated at different temperatures and mixed with LiOH to synthesize the LiNiO2 cathode material. The LiNiO2 calcination temperature was optimized to achieve a high initial discharge capacity of 231.7 mAh/g (0.1 C/2.6 V) with a first cycle efficiency of 91.3% and retaining a capacity of 135 mAh/g after 400 cycles. These a…

LNOcathodeMaterials scienceelektroditlitiumioniakutchemistry.chemical_elementlithium-ion battery02 engineering and technology010402 general chemistryElectrochemistrylcsh:Technology01 natural sciencesLithium-ion batteryIonlaw.inventionlcsh:Chemistrylithium nickel oxideCathode materiallawGeneral Materials ScienceCalcinationlcsh:QH301-705.5InstrumentationFluid Flow and Transfer Processeslcsh:TPrecipitation (chemistry)Process Chemistry and TechnologyGeneral Engineeringmateriaalit021001 nanoscience & nanotechnologysähkökemialcsh:QC1-999Cathode0104 chemical sciencesComputer Science Applicationslitiumlcsh:Biology (General)lcsh:QD1-999Chemical engineeringchemistrylcsh:TA1-2040oksiditLithiumnikkelilcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:PhysicsApplied Sciences
researchProduct

Ab initio calculations of Li2(Co, Mn)O8 solid solutions for rechargeable batteries

2019

The presented study has been financed via the Latvian Science Council Grant No. 2018/2-0083. The author is grateful to Professors M. R. Philpott, G. Ceder and G. Borstel for many stimulating discussions during his work at Singapore. We performed all our ab initio calculations at North German Parallel Computer Center located at Hannover (HLRN).

Li2Co1Mn3O8 cathode materialMaterials science5 V rechargeable Li-ion batteryThermodynamicsStatistical and Nonlinear Physics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics7. Clean energy01 natural sciences0104 chemical sciencesaverage voltageAb initio quantum chemistry methods:NATURAL SCIENCES:Physics [Research Subject Categories]Current (fluid)0210 nano-technologySolid solutionInternational Journal of Modern Physics B
researchProduct

Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temper…

2013

Ba0.5Sr0.5Co0.8Fe0.2O3-? (BSCF) powders were prepared by solution combustion synthesis using single and double fuels. The effect of the fuel mixture on the main properties of this well-known solid oxide fuel cell cathode material with high oxygen ion and electronic conduction was investigated in detail. Results showed that the fuel mixture significantly affected the area-specific resistance of the BSCF cathode materials, by controlling the oxygen deficiency and stabilizing the Co2+ oxidation state. It was demonstrated that high fuel-to-metal cations molar ratios and high reducing power of the combustion fuel mixture are mainly responsible for the decreasing of the area-specific resistance o…

Materials scienceCathode materialsInorganic chemistrychemistry.chemical_elementBSCFCombustionlaw.inventionchemistry.chemical_compoundOxidation statelawPhase (matter)Materials ChemistryChatode materialIntermediate temperature solid oxide fuel cellsStrontiumRenewable Energy Sustainability and the EnvironmentPerovskite-type materialsBariumPerovskite-type compoundsCombustion fuel mixtureCathodeElectronic Optical and Magnetic MaterialsCobaltiteFuel TechnologychemistrySolution combustion synthesisSolid oxide fuel cellSettore CHIM/07 - Fondamenti Chimici Delle TecnologieMaterials for Renewable and Sustainable Energy
researchProduct

First principles calculations of oxygen reduction reaction at fuel cell cathodes

2020

This study was partly supported by M-ERA-NET project SunToChem (EK, YM). The computer resources were provided by Stuttgart Super-computing Center (Project DEFTD 12939). Authors thank E. Heifets, M. M. Kuklja, M. Arrigoni, D. Morgan, R. Evarestov, and D. Gryaznov for fruitful discussions.

Materials scienceCathode materialsKineticsAb initioOxideAnalytical chemistry02 engineering and technology010402 general chemistry01 natural sciencesAnalytical Chemistrylaw.inventionOxygen reduction Reaction (ORR)chemistry.chemical_compoundSurface arealawVacancy defectElectrochemistry:NATURAL SCIENCES:Physics [Research Subject Categories]PerovskitesFuel cellsPerovskite (structure)Rate determining step021001 nanoscience & nanotechnologyRate-determining stepCathode0104 chemical sciencesPolar surfaceschemistry0210 nano-technologyFirst principles calculations
researchProduct

Optimized morphology and tuning the Mn3+ content of LiNi0.5Mn1.5O4 cathode material for li-ion batteries

2023

The advantages of cobalt-free, high specific capacity, high operating voltage, low cost, and environmental friendliness of spinel LiNi0.5Mn1.5O4 (LNMO) material make it one of the most promising cathode materials for next-generation lithium-ion batteries. The disproportionation reaction of Mn3+ leads to Jahn–Teller distortion, which is the key issue in reducing the crystal structure stability and limiting the electrochemical stability of the material. In this work, single-crystal LNMO was synthesized successfully by the sol-gel method. The morphology and the Mn3+ content of the as-prepared LNMO were tuned by altering the synthesis temperature. The results demonstrated that the LNMO_11…

cathode materialsli-ion batterylitiumioniakutLiNi0.5Mn1.5O4Mn3+ contentsol-gel methodGeneral Materials ScienceLiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>; sol-gel method; Mn<sup>3+</sup> content; cathode materials; li-ion batterysähkökemia
researchProduct

Über die auslösung der polymerisation ungesättigter verbindungen durch aktivierten wasserstoff

1953

In Ubereinstimmung mit Wilson und Parravano wurde gefunden, das Methacrylsauremethylester, Acrylnitril, Acrylsaure und Acrylsauremethylester in wasriger Losung durch an der Kathode abgeschiedenen Wasserstoff polymerisiert werden. Die Reibenfolge der Wirksamkeit des Kathodenmaterials entspricht derjenigen der elektrolytischen Reduktion und der Uberspannungsreihe. Die Kathodische Polymerisation verlauft uber Radikale; sie kann durch molekularen Sauerstoff inhibiert werden. - Katalytisch erregter Wasserstoff (Pd-Katalysator) kann als Reduktionsmittel von Redoxsystemen Polymerisation von Acrylnitril und anderen Monomeren auslosen. Unter bestimmten Bedingungen erfolgen katalytische Hydrierung un…

chemistry.chemical_compoundAqueous solutionMonomerPolymerizationChemistryCathode materialPolymer chemistryCatalytic hydrogenationAcrylic acidDie Makromolekulare Chemie
researchProduct

Effects of Lithium Source and Content on the Properties of Li-Rich Layered Oxide Cathode Materials

2023

Lithium-rich layered oxide (LLO) are considered high-capacity cathode materials for next-generation lithium-ion batteries. In this study, LLO cathode materials were synthesized via the hydroxide coprecipitation method followed by a two-step lithiation process using different lithium contents and lithium sources. The effects of lithium content and lithium source on structure and electrochemical performance were investigated. This study demonstrated the clear impact of Li/TM ratio on electrochemical performance. Lower Li/TM ratio reduced the irreversible capacity loss in the first cycle and provided better cycling stability among all samples. The best results exhibited an initial discharge ca…

lithium contentcathode materialGeneral Chemical EngineeringelektroditlitiumioniakutGeneral Engineeringlithium-rich layered oxidescoprecipitationmateriaalitlithium-ion batterysähkökemialithium sourceGeneral EnergylitiumoksiditChemEngineering
researchProduct